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1 Introduction 

 
Disruptive memory technologies are leading to major 
improvements in both the capacity and bandwidth of 
memories. When coupled with fast cores, these 
memories enable us to tackle large-scale data analytics 
problems at much lower cost and power than ever 
before. One such memory technology is the Intel® 
Optane™ DC persistent memory. Intel Optane DC 
persistent memory modules are like DRAM in form 
factor and can be configured as volatile main memory, 
persistent memory or as a combination. 

 
Figure1: Intel Optane DC Persistent Memory 

 
One application area that benefits from this new 
memory technology is graph analytics. Graph 
analytics systems today must handle very large graphs 
such as the Facebook friends’ graph, which has more 
than a billion nodes and 200 billion edges, and the 
indexable Web graph, which has roughly 100 billion 
nodes and trillions of edges. Parallel computing is 
essential for processing graphs of this size in 
reasonable time.  
To process such graphs with billions of nodes and 
edges, two methods are commonly employed: 

• use distributed-memory machines (clusters) 
that have sufficient main memory for in-
memory processing of the graphs, or 

• use secondary storage to store the graphs and 
use out-of-core algorithms to read a portion of 
the graph into DRAM at a time under software 
control and process it. 

In both approaches, it is usually necessary to rethink 
algorithms and data structures from scratch. Intel 
Optane DC persistent memory presents an interesting 

alternative since shared-memory graph analytics can 
be used out-of-the-box to process very large graphs. 
Katana has been studying this approach on a 2-socket 
machine with 2nd-generation Intel® Xeon® Scalable 
processors with 6TB of Intel Optane DC persistent 
memory. Our results show that graph analytics on Intel 
Optane DC persistent memory can be competitive with 
performing analytics on production clusters. 
 

2 Optane DC PMM Modes  
 
Optane DC PMM has 2 modes of operation:  
 

1. Memory-Mode: In memory mode, Optane PMM 
is treated as main memory, and DRAM acts as 
direct-mapped cache called near-memory. The 
granularity of caching from Optane PMM to 
DRAM is 4KB. This enables the system to deliver 
DRAM-like performance at substantially lower 
cost and power with no modifications to the 
application. Although the memory media is 
persistent, the software sees it as volatile 
memory.  This enables systems to provide up to 
6TB of randomly accessible storage, which is 
expensive if implemented in DRAM. 

2. App-Direct Mode: In app-direct mode, Optane 
PMM modules are treated as byte-addressable 
persistent memory. One compelling case for 
app-direct mode is in large memory databases 
where indices can be stored in persistent 
memory to avoid rebuilding them on reboot, 
achieving a significant reduction in restart 
time. 

 
Figure 2: Modes in Optane PMM 
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In this article, we focus on the memory mode of Optane 
DC PMM. 

 
3 Efficient Memory Hierarchy 

 
In our study [1], we found the following system-level 
knobs to play a key role in efficiently using the Optane 
PMM memory hierarchy and getting good performance 
for graph analytics workloads. 
 

1. NUMA-Aware Allocation: In an Optane PMM 
machine,  applications must not  only  maximize  
local  NUMA  accesses,  but must  also  use  a 
NUMA  policy  that  maximizes  the  near-
memory  used  in  order  to reduce DRAM 
“conflict misses” since DRAM acts as a direct-
mapped cache for Optane PMM in the memory 
mode. The limited DRAM size increases the 
probability of conflict misses arising from 
physical addresses that map to the same cache 
line. Katana provides application-level NUMA-
allocation policies such as NUMA-Interleaved 
and NUMA-Blocked. The Katana Graph Engine 
also optimizes program execution to exploit 
NUMA locality; for example, it performs NUMA-
aware dynamic load balancing. 

 
2. NUMA Migrations: NUMA migration must be 

turned off because of its overheads: (a) it 
requires book-keeping to track accesses to the 
pages to select pages for migration, which is 
costlier on Optane as compared to DRAM, and 
(b) migration changes the virtual-to-physical 
address mapping, which makes the Page Table 
Entries (PTEs) cached in CPU’s Translation 
Lookaside Buffers (TLBs) stale, causing TLB 
shootdown on each core to invalidate stale 
entries. TLB shootdowns add to DRAM access 
latency.   

 
3. Page Size Selection:   A page size of 2MB 

(termed huge pages) performs better than the 
default 4KB page size because for graph 
workloads, the time spent in handling TLB 
misses can be a performance bottleneck. 
Katana automatically allocates 2MB pages 
when available instead of relying on transparent 
huge pages (THP) provided by the operating 
system. We have observed this policy to perform 
better. 

 
 

 

4 Efficient Graph Algorithms  
 
In general, there are many algorithms that can solve a 
given graph problem; for example, the single-source 
(weighted) shortest-path (sssp) problem can be solved 
using Dijkstra’s algorithm, the Bellman-Ford algorithm, 
chaotic relaxation, or delta-stepping. The Bellman-Ford 
algorithm is an example of a round-based algorithm: it is 
organized as a series of rounds, and in each round, the 
algorithm applies the well-known relaxation operator [10] 
to vertices to update their labels based on the labels of 
their immediate neighbors. On the other hand, Dijkstra’s 
algorithm and the delta-stepping algorithm are 
asynchronous algorithms; instead of rounds, these 
algorithms use worklists of active nodes to which the 
operator must be applied, and they terminate when the 
worklist is empty. These algorithms may have different 
asymptotic complexities and different amounts of 
parallelism. 
In addition, a given algorithm can usually be 
implemented in different ways and these differences can 
have a major effect on parallel performance; 
implementations with fine-grain locking, for example, 
usually perform better than those with coarse-grain 
locking. On machines with Optane PMM, it is 
advantageous to use algorithms with non-vertex 
operators [10] and asynchronous algorithms. The Katana 
Graph Engine provides a general non-vertex 
programming model [6] and highly scalable concurrent 
data structures such as concurrent graph 
representations and concurrent worklists to permit 
application programmers to implement efficient 
algorithms. The Katana core graph library provides graph 
analytics applications that use efficient algorithms on 
Optane PMM machines. The graph engine also provides 
a streaming graph partitioner and a communication 
runtime optimized for graph computations, so 
applications can also run on clusters with minimal effort 
by application programmers.  
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5 Performance Evaluation 
 
The Optane DC PMM experiments reported in this 
note are conducted on a 2-socket machine with 
Intel’s second-generation Xeon scalable processor 
(“Cascade Lake”) with 48 cores (up to 96 threads 
with hyperthreading) with a clock rate of 2.2 Ghz. 
The machine has 6TB of Optane PMM and 384GB of 
DDR4 RAM.  
To compare this Optane DC PMM solution with a 
cluster-based solution, we used the Stampede 
cluster at the Texas Advanced Computing Center 
using up to 256 Intel Xeon Platinum 8160 (“Skylake”) 
2 socket machines each with 48 cores with a clock 
rate of 2.1 Ghz and 192GB DDR4 RAM.  
We study [1] widely used graph kernels such as 
betweenness centrality (bc), breadth first search 
(bfs), connected components (cc), pagerank (pr), 
single source shortest path (sssp), and triangle 
counting (tc). These kernels are run on both real-
world and synthetically generated graphs. We use 
very large real-world graphs including social 
networks [2] such as twitter and friendster, protein 
networks like iso_m100, and web-crawls such as 
clueweb12, uk14, and wdc12 (the largest publicly 
available graph dataset).  
Figure 3 shows execution times of the graph 
kernels for the clueweb12[3] graph, which is one of 
the largest publicly available web-crawls with 978 
million nodes and 42.6 billion edges. Clueweb12 
(~324GB in compressed binary format) fits in DRAM 
on our machine. For each kernel, we measured the 
execution times when (i) the graph is stored entirely 
in DRAM, and (ii) the graph is stored entirely in 
Optane PMM at the start of the computation and 
brought into DRAM as needed by the computation. 
The results show that Optane PMM can deliver 
performance comparable to DRAM for this graph. 

Figure 4 shows the performance of the Katana 
Graph Engine [5] on different platform 
configurations, normalized to the performance on 
32 machines of the Stampede cluster for single 
source (weighted) shortest path (sssp) on wdc12[4] 
which is the largest publicly available web-crawl. 
Observe that on the cluster, Katana scales well as 
the number of machines is increased; graph 
analytics on 128 Stampede machines is on average 
2.7x faster than on 32 machines. Interestingly, 
graph analytics on a single Cascade Lake machine 
with Optane PMM outperforms even 64 Skylake 
machines of the Stampede production cluster! The 
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main reason is the Optane PMM solution avoids the 
overhead of cluster communication.  

 

6 Conclusion 
The Katana Graph Engine can be deployed on a 

single Xeon machine equipped with Optane DC 
PMM to provide a very high-performance platform 
for graph analytics on extremely large graphs that 
are several TB in size. These performance 
advantages arise from the generality of Katana’s 
non-vertex programming model, and its efficient 
compute engine, support for asynchronous 
execution, highly scalable concurrent data 
structures, NUMA-aware allocation policies, and 
huge pages support. The graph engine also 
supports the use of clusters of such machines for 
graph analytics, providing a scale-out solution if 
needed for even larger graphs.  

 
For more details, visit https://www.katanagraph.com.
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