
Next Generation Graph Computing

		 1 All Rights Reserved.

Katana Graph Engine

on Intel Optane DC Persistent Memory
(PMM)

1 Introduction

Disruptive memory technologies are leading to major
improvements in both the capacity and bandwidth of
memories. When coupled with fast cores, these
memories enable us to tackle large-scale data analytics
problems at much lower cost and power than ever
before. One such memory technology is the Intel®
Optane™ DC persistent memory. Intel Optane DC
persistent memory modules are like DRAM in form
factor and can be configured as volatile main memory,
persistent memory or as a combination.

Figure1: Intel Optane DC Persistent Memory

One application area that benefits from this new
memory technology is graph analytics. Graph
analytics systems today must handle very large graphs
such as the Facebook friends’ graph, which has more
than a billion nodes and 200 billion edges, and the
indexable Web graph, which has roughly 100 billion
nodes and trillions of edges. Parallel computing is
essential for processing graphs of this size in
reasonable time.
To process such graphs with billions of nodes and
edges, two methods are commonly employed:

• use distributed-memory machines (clusters)
that have sufficient main memory for in-
memory processing of the graphs, or

• use secondary storage to store the graphs and
use out-of-core algorithms to read a portion of
the graph into DRAM at a time under software
control and process it.

In both approaches, it is usually necessary to rethink
algorithms and data structures from scratch. Intel
Optane DC persistent memory presents an interesting

alternative since shared-memory graph analytics can
be used out-of-the-box to process very large graphs.
Katana has been studying this approach on a 2-socket
machine with 2nd-generation Intel® Xeon® Scalable
processors with 6TB of Intel Optane DC persistent
memory. Our results show that graph analytics on Intel
Optane DC persistent memory can be competitive with
performing analytics on production clusters.

2 Optane DC PMM Modes

Optane DC PMM has 2 modes of operation:

1. Memory-Mode: In memory mode, Optane PMM
is treated as main memory, and DRAM acts as
direct-mapped cache called near-memory. The
granularity of caching from Optane PMM to
DRAM is 4KB. This enables the system to deliver
DRAM-like performance at substantially lower
cost and power with no modifications to the
application. Although the memory media is
persistent, the software sees it as volatile
memory. This enables systems to provide up to
6TB of randomly accessible storage, which is
expensive if implemented in DRAM.

2. App-Direct Mode: In app-direct mode, Optane
PMM modules are treated as byte-addressable
persistent memory. One compelling case for
app-direct mode is in large memory databases
where indices can be stored in persistent
memory to avoid rebuilding them on reboot,
achieving a significant reduction in restart
time.

Figure 2: Modes in Optane PMM

Next Generation Graph Computing

		 2 All Rights Reserved.

In this article, we focus on the memory mode of Optane
DC PMM.

3 Efficient Memory Hierarchy

In our study [1], we found the following system-level
knobs to play a key role in efficiently using the Optane
PMM memory hierarchy and getting good performance
for graph analytics workloads.

1. NUMA-Aware Allocation: In an Optane PMM
machine, applications must not only maximize
local NUMA accesses, but must also use a
NUMA policy that maximizes the near-
memory used in order to reduce DRAM
“conflict misses” since DRAM acts as a direct-
mapped cache for Optane PMM in the memory
mode. The limited DRAM size increases the
probability of conflict misses arising from
physical addresses that map to the same cache
line. Katana provides application-level NUMA-
allocation policies such as NUMA-Interleaved
and NUMA-Blocked. The Katana Graph Engine
also optimizes program execution to exploit
NUMA locality; for example, it performs NUMA-
aware dynamic load balancing.

2. NUMA Migrations: NUMA migration must be

turned off because of its overheads: (a) it
requires book-keeping to track accesses to the
pages to select pages for migration, which is
costlier on Optane as compared to DRAM, and
(b) migration changes the virtual-to-physical
address mapping, which makes the Page Table
Entries (PTEs) cached in CPU’s Translation
Lookaside Buffers (TLBs) stale, causing TLB
shootdown on each core to invalidate stale
entries. TLB shootdowns add to DRAM access
latency.

3. Page Size Selection: A page size of 2MB

(termed huge pages) performs better than the
default 4KB page size because for graph
workloads, the time spent in handling TLB
misses can be a performance bottleneck.
Katana automatically allocates 2MB pages
when available instead of relying on transparent
huge pages (THP) provided by the operating
system. We have observed this policy to perform
better.

4 Efficient Graph Algorithms

In general, there are many algorithms that can solve a
given graph problem; for example, the single-source
(weighted) shortest-path (sssp) problem can be solved
using Dijkstra’s algorithm, the Bellman-Ford algorithm,
chaotic relaxation, or delta-stepping. The Bellman-Ford
algorithm is an example of a round-based algorithm: it is
organized as a series of rounds, and in each round, the
algorithm applies the well-known relaxation operator [10]
to vertices to update their labels based on the labels of
their immediate neighbors. On the other hand, Dijkstra’s
algorithm and the delta-stepping algorithm are
asynchronous algorithms; instead of rounds, these
algorithms use worklists of active nodes to which the
operator must be applied, and they terminate when the
worklist is empty. These algorithms may have different
asymptotic complexities and different amounts of
parallelism.
In addition, a given algorithm can usually be
implemented in different ways and these differences can
have a major effect on parallel performance;
implementations with fine-grain locking, for example,
usually perform better than those with coarse-grain
locking. On machines with Optane PMM, it is
advantageous to use algorithms with non-vertex
operators [10] and asynchronous algorithms. The Katana
Graph Engine provides a general non-vertex
programming model [6] and highly scalable concurrent
data structures such as concurrent graph
representations and concurrent worklists to permit
application programmers to implement efficient
algorithms. The Katana core graph library provides graph
analytics applications that use efficient algorithms on
Optane PMM machines. The graph engine also provides
a streaming graph partitioner and a communication
runtime optimized for graph computations, so
applications can also run on clusters with minimal effort
by application programmers.

Next Generation Graph Computing

		 3 All Rights Reserved.

5 Performance Evaluation

The Optane DC PMM experiments reported in this
note are conducted on a 2-socket machine with
Intel’s second-generation Xeon scalable processor
(“Cascade Lake”) with 48 cores (up to 96 threads
with hyperthreading) with a clock rate of 2.2 Ghz.
The machine has 6TB of Optane PMM and 384GB of
DDR4 RAM.
To compare this Optane DC PMM solution with a
cluster-based solution, we used the Stampede
cluster at the Texas Advanced Computing Center
using up to 256 Intel Xeon Platinum 8160 (“Skylake”)
2 socket machines each with 48 cores with a clock
rate of 2.1 Ghz and 192GB DDR4 RAM.
We study [1] widely used graph kernels such as
betweenness centrality (bc), breadth first search
(bfs), connected components (cc), pagerank (pr),
single source shortest path (sssp), and triangle
counting (tc). These kernels are run on both real-
world and synthetically generated graphs. We use
very large real-world graphs including social
networks [2] such as twitter and friendster, protein
networks like iso_m100, and web-crawls such as
clueweb12, uk14, and wdc12 (the largest publicly
available graph dataset).
Figure 3 shows execution times of the graph
kernels for the clueweb12[3] graph, which is one of
the largest publicly available web-crawls with 978
million nodes and 42.6 billion edges. Clueweb12
(~324GB in compressed binary format) fits in DRAM
on our machine. For each kernel, we measured the
execution times when (i) the graph is stored entirely
in DRAM, and (ii) the graph is stored entirely in
Optane PMM at the start of the computation and
brought into DRAM as needed by the computation.
The results show that Optane PMM can deliver
performance comparable to DRAM for this graph.

Figure 4 shows the performance of the Katana
Graph Engine [5] on different platform
configurations, normalized to the performance on
32 machines of the Stampede cluster for single
source (weighted) shortest path (sssp) on wdc12[4]
which is the largest publicly available web-crawl.
Observe that on the cluster, Katana scales well as
the number of machines is increased; graph
analytics on 128 Stampede machines is on average
2.7x faster than on 32 machines. Interestingly,
graph analytics on a single Cascade Lake machine
with Optane PMM outperforms even 64 Skylake
machines of the Stampede production cluster! The

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

pr sssp tc

bc bfs cc

6 12 24 48 96 6 12 24 48 96 6 12 24 48 96

6 12 24 48 96 6 12 24 48 96 6 12 24 48 96

8

16

32

64

256

512

1024

4

8

16

32

16

32

64

128

16

32

64

512

1024

2048

Number of threads
Ti

m
e

(s
ec

)

● ●Optane PMM DDR4 DRAM

Scale out Scale up

1 node CascadeLake
With Optane PMM

Stampede Cluster
With 32 Nodes

Stampede Cluster
With 64 Nodes

Stampede Cluster
With 128 Nodes

1.8x
1.4x

2.7x

1.0x

Next Generation Graph Computing

		 4 All Rights Reserved.

main reason is the Optane PMM solution avoids the
overhead of cluster communication.

6 Conclusion
The Katana Graph Engine can be deployed on a

single Xeon machine equipped with Optane DC
PMM to provide a very high-performance platform
for graph analytics on extremely large graphs that
are several TB in size. These performance
advantages arise from the generality of Katana’s
non-vertex programming model, and its efficient
compute engine, support for asynchronous
execution, highly scalable concurrent data
structures, NUMA-aware allocation policies, and
huge pages support. The graph engine also
supports the use of clusters of such machines for
graph analytics, providing a scale-out solution if
needed for even larger graphs.

For more details, visit https://www.katanagraph.com.

References:

[1] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K.
Pingali. 2020. “Single machine graph
analytics on massive datasets using Intel
Optane DC persistent memory”. VLDB,
2020.

[2] SNAP Datasets:
https://snap.stanford.edu/data/com-
Friendster.html

[3] T. L. Project. The ClueWeb12 Dataset, 2013.

[4] R. Meusel, S. Vigna, O. Lehmberg, and C.
Bizer. Web data commons – hyperlink
graphs, 2012.

[5] R. Dathathri, G. Gill, L. Hoang, H. Dang, A.
Brooks, N. Dryden, M. Snir, and K. Pingali. 2018.
Gluon: a communication-optimizing substrate
for distributed heterogeneous graph
analytics. PLDI’18

[6] D. Nguyen, A. Lenharth, and K. Pingali. 2013. A
lightweight infrastructure for graph analytics.
SOSP '13

